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Abstract

The neural mechanisms underlying anxiety states are believed to involve interactions among forebrain limbic circuits and brainstem
serotonergic systems. Consistent with this hypothesis, FG-7142, a partial inverse agonist at the benzodiazepine allosteric site of the GABAA

receptor, increases c-Fos expression within a subpopulation of brainstem serotonergic neurons. Paradoxically, FG-7142 has no effect on
extracellular serotonin concentrations, as measured using in vivo microdialysis, in certain anxiety-related brain structures. This study tested the
hypothesis that FG-7142 alters serotonin metabolism within one or more nodes of a defined anxiety-related forebrain circuit. Rats received one of
four treatments (vehicle, 1.9, 3.8, or 7.5 mg/kg FG-7142, i.p.) and brains were collected 1 h following treatment. Thirteen forebrain regions were
microdissected and analyzed for L-tryptophan, serotonin, and 5-hydroxyindoleacetic acid concentrations using high pressure liquid
chromatography with electrochemical detection. FG-7142 (7.5 mg/kg) increased L-tryptophan, serotonin, and 5-hydroxyindoleacetic acid
concentrations in the prelimbic cortex but not in several other regions studied including subdivisions of the amygdala and bed nucleus of the stria
terminalis. These data demonstrate that FG-7142 alters brain tryptophan concentrations and serotonin metabolism in specific components of an
anxiety-related forebrain circuit including the medial prefrontal cortex, an important structure involved in executive function and the regulation of
emotional behavior.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The neural mechanisms underlying the physiological and
behavioral effects of anxiogenic drugs are not thoroughly
understood. However, recent studies suggest that multiple
anxiogenic drugs with diverse pharmacological properties have
convergent effects on a distributed anxiety-related neural
system. Drugs, including N-methyl-beta-carboline-3-carboxa-
mide (FG-7142), a partial inverse agonist at the benzodiazepine
allosteric site of the GABAA receptor (Dorow et al., 1983), m-
chlorophenylpiperazine (mCPP), a non-selective 5-HT2C re-
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ceptor agonist (Whitton and Curzon, 1990), caffeine, an
adenosine receptor antagonist (Baldwin and File, 1989), and
yohimbine, an α2-adrenoceptor antagonist (Charney et al.,
1983), increase the expression of the protein product of the
immediate-early gene, c-fos, in multiple forebrain structures
widely acknowledged to be part of a network mediating
anxiety-related behavioral and physiological responses (Singe-
wald et al., 2003). These structures include the basolateral and
central amygdaloid nuclei, bed nucleus of the stria terminalis,
dorsomedial hypothalamus, cingulate cortex, and infralimbic
and prelimbic cortices (Gray and McNaughton, 2000; Millan,
2003; Walker et al., 2003). In addition, these anxiogenic drugs
induce c-Fos expression in a subpopulation of serotonergic
neurons within the dorsal raphe nucleus (Singewald and Sharp,
2000; Abrams et al., 2005).
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One mechanism through which anxiogenic drugs may
influence anxiety states and anxiety-related behavior is via
actions on brainstem neuromodulatory systems including
serotonergic systems. Serotonin is widely implicated in the
modulation of anxiety states (Andrews and File, 1993; Graeff et
al., 1996a; Gray and McNaughton, 2000; Millan, 2003; Maier
and Watkins, 2005; Lowry et al., 2005). In addition, recent
studies suggest that anxiety-related stimuli, including treatment
with anxiogenic drugs (Abrams et al., 2005), the anxiety-related
neuropeptide urocortin 2, (Staub et al., 2005) or exposure to
stress-or anxiety-related challenges such as social defeat
(Gardner et al., 2005) or inescapable stress (Grahn et al.,
1999) have selective actions on topographically organized
subpopulations of serotonergic neurons within the mid-
rostrocaudal and caudal part of the dorsal raphe nucleus.
Subpopulations of serotonergic neurons in these regions of the
brainstem raphe complex give rise to projections to specific
forebrain regions involved in the regulation of anxiety states
and anxiety-related behavior and physiology (Lowry et al.,
2005). However, there is very limited knowledge on the effects
of anxiogenic drugs such as FG-7142 on serotonin metabolism
or neurotransmission within anxiety-related forebrain
structures.

FG-7142 induces an increase in anxiety state as measured in
a variety of experimental paradigms in rats, mice, cats, and
primates, including humans (Ninan et al., 1982; Ongini et al.,
1983; Skolnick et al., 1984; Dorow, 1987; File and Baldwin,
1987). Serotonergic systems arising from the dorsal raphe
nucleus may play an important role in these effects as
microinjections of FG-7142 directly into the rat dorsal raphe
nucleus increase passive avoidance behavior in an elevated T-
maze test of anxiety-related behavior (Graeff et al., 1996b; Sena
et al., 2003). In addition, understanding interactions between
FG-7142 and serotonergic systems may be relevant to neural
mechanisms underlying the behavioral consequences of
uncontrollable or inescapable stress, called “behavioral depres-
sion” (Weiss et al., 1981) or “learned helplessness” (Maier and
Seligman, 1976). Serotonergic neurons within the mid-rostro-
caudal and caudal regions of the dorsal raphe nucleus appear to
be critical for the potentiation of conditioned fear and induction
of deficits in escape behavior that occur 24 h following
exposure to inescapable stress in a learned helplessness
paradigm (Maier and Watkins, 2005). These effects of
uncontrollable stress and the associated serotonin release in
the forebrain have been linked to neural mechanisms regulating
anxiety states (Maier and Watkins, 2005) and can be blocked
with the anxiolytic drug flumazenil (Maier et al., 1995b). FG-
7142 and the full inverse agonist at the benzodiazepine
allosteric site of the GABAA receptor, methyl 6,7-dimethoxy-
4-ethyl-beta-carboline-3-carboxylate (DMCM), have been
shown to mimic the effects of uncontrollable stress in that
they induce a similar potentiation of conditioned fear and
deficits in escape behavior measured 24 h later (Drugan et al.,
1985; Maier et al., 1995a). Together, these findings implicate
FG-7142 and a subpopulation of serotonergic neurons within
the mid-rostrocaudal and caudal dorsal raphe nucleus in
facilitation of anxiety- or fear-related behavior.
FG-7142 treatment increases c-Fos immunoreactivity in
a subset of serotonergic neurons within the mid-rostocaudal
and caudal parts of the dorsal raphe nucleus, a region of
the brainstem raphe complex containing large numbers of
neurons that project to forebrain structures implicated in
the regulation of anxiety states (Van Bockstaele et al.,
1993; Graeff et al., 1996a; Vertes et al., 1999; Lowry et
al., 2005; Abrams et al., 2005). However, previous studies
using microdialysis found no effect of systemic or intra-
dorsal raphe nucleus injections of FG-7142 on extracellular
serotonin concentrations in the ventral hippocampus,
amygdala or dorsomedial periaqueductal gray region (Pei
et al., 1989; Viana et al., 1997). The lack of previous
evidence for FG-7142-induced increases in serotonergic
neurotransmission in specific forebrain regions implicated
in the regulation of anxiety states led us to conduct a
comprehensive survey of multiple components of an
anxiety-related forebrain network as defined by Singewald
et al. (2003). The current study was designed to test the
hypothesis that FG-7142 treatment increases indices of
serotonin metabolism within one or more components of
an anxiety-related forebrain circuit. In this study, we
investigated the effects of intraperitoneal (i.p.) injections
of FG-7142 on tissue concentrations of L-tryptophan
(tryptophan; the amino acid precursor to serotonin), 5-
hydroxytryptamine (serotonin; 5-HT), and 5-hydroxyindo-
leacetic acid (5-HIAA; the main catabolite of serotonin) in
microdissected regions of an anxiety-related network in the
forebrain. We predicted that FG-7142 treatment would
induce increases in serotonin and 5-HIAA concentrations
within components of this forebrain neural network that
receive serotonergic innervation from a subpopulation of
FG-7142-sensitive serotonergic neurons within the brain-
stem raphe complex.

2. Materials and methods

2.1. Animals

Adult male Wistar rats (300–400 g) were obtained from
B&K Universal (Hull, UK) and single-housed under standard
environmental conditions in the testing environment for
2 weeks prior to the experiment (21±2 °C; 55±10%
humidity; illumination of approximately 100 lx or less at
1 m). Animals were housed in RC1 cages (50 cm
length×33 cm width×23 cm height; North Kent Plastics,
Dartford, UK) on a 14:10 h light–dark cycle with lights on at
5 AM. Food (B&K CRM rat chow; B&K Universal) and
water were provided ad libitum. All animals were handled for
2 min daily for 5 days prior to the experimental treatment.
Housing conditions were replicated from previous work in our
lab in which FG-7142 (7.5 mg/kg) increased c-Fos immuno-
reactivity in a subpopulation of midbrain serotonergic
neurons, as well as behavioral arousal and vigilance behaviors
in a home-cage environment (Abrams et al., 2005). All
procedures were approved by the Ethical Review Group at the
University of Bristol and were conducted in accordance with



Table 1
Forebrain regions selected for analysis of tryptophan, serotonin, and 5-HIAA
concentrations

Brain region Rostrocaudal
levels (mm Bregma)

Microdissections
(# [diameter (μm)])

Infralimbic cortex (IL)a 2.89 to 2.59 2 [690]
Prelimbic cortex (PrL)a 2.89 to 2.59 2 [690]
Cingulate cortex (Cg1)b 2.89 to 2.59 2 [690]
Lateral septum, intermediate part
(LSI)a

0.49 to 0.19 4 [690]
0.19 to −0.11

Bed nucleus of the stria terminalis,
laterodorsal part (BSTLD)a

0.19 to −0.11 4 [410]
−0.11 to −0.41

Primary motor cortex (M1)a −0.11 to −0.41 2 [690]
Agranular insular cortex, posterior
part (AIP)a

−1.61 to −1.91 2 [690]

Paraventricular nucleus of the
hypothalamus, medial
parvocellular part (PaMP)a

−1.61 to −1.91 4 [410]
−1.91 to −2.21

Lateral hypothalamus (LH)a −1.61 to −1.91 4 [690]
−1.91 to −2.21

Basolateral amygdaloid nucleus,
anterior and posterior parts
(BL)b

−2.51 to −2.81 6 [690]
−2.81 to −3.11
−3.11 to−3.41

Central amygdaloid nucleus (Ce)a −2.81 to −3.11 4 [410]
−3.11 to −3.41

Medial amygdaloid nucleus,
anterior and posterior ventral
parts (Me)b

−2.81 to −3.11 4 [410]
−3.11 to −3.41

Dorsomedial hypothalamic
nucleus, dorsal part (DMD)b

−2.81 to −3.11 4 [410]
−3.11 to −3.41

a Demonstrated increased c-Fos expression with all drugs (FG-7142,
yohimbine, caffeine and mCPP) (Singewald et al., 2003).
b Demonstrated increased c-Fos expression with all drugs excluding mCPP

(Singewald et al., 2003).
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UK Home Office guidelines and the Scientific (Animal
Procedures) Act 1986.

2.2. Drug treatment

Each rat received an intraperitoneal injection of 0, 1.9, 3.8,
or 7.5 mg/kg (n=5) of the partial inverse agonist at the
benzodiazepine allosteric site of the GABAA receptor, N-
methyl-beta-carboline-3-carboxamide (FG-7142) (Tocris,
Avonmouth, UK), dissolved in 0.9% saline/40% 2-hydroxy-
propyl-β-cyclodextrin (Tocris, Avonmouth, UK) to increase
solubility. Solutions were made up for 2 mL/kg injections and
volumes were adjusted to animal weight. Rats were taken from
their home cage, given an injection in an adjacent room and
were returned to their home cage. After a period of 1 h, rats
were taken to a dissection room, rapidly decapitated, and
brains were dissected, rapidly frozen on dry ice, and stored at
−80 °C.

2.3. Brain microdissection

Brain microdissection combined with high pressure liquid
chromatography and electrochemical detection of tryptophan,
serotonin, and 5-HIAA was based on a previously described
procedure (Renner and Luine, 1984). Although not without
limitations, this approach allowed for simultaneous measure-
ment of tryptophan, serotonin, and 5-HIAA concentrations in
multiple components of a defined anxiety-related network of
brain structures (Singewald et al., 2003) with a high degree of
neuroanatomical resolution, a combination that is not possible
using other techniques. Frozen brain tissue was sectioned
using a cryostat (Leica CM1900, Milton Keynes, UK) and
serial 300 μm sections were thaw-mounted onto glass
microscope slides, rapidly re-frozen, and stored at −80 °C
until microdissection. Individual brain regions were micro-
dissected at −10 °C following the Palkovits punch technique
(Palkovits, 1988) using a stainless steel microdissection needle
(690 or 410 μm diameter, Neuropunch #18036-19 and
Fig. 1. Diagrams of coronal sections from a standard rat brain atlas (Paxinos and
tryptophan, serotonin, and 5-HIAA concentrations. All regions were sampled bilate
represented in the diagrams at one of the indicated levels. The numbers on the uppe
#18036-22, Fine Science Tools, Foster City, CA, USA).
Microdissected tissues from individual brain regions from
individual rats were expelled into separate tubes containing
100 μl acetate buffer (0.3% sodium acetate and 0.43% glacial
acetic acid; pH 5.0), and then stored at −80 °C until they were
analyzed for tissue concentrations of tryptophan, serotonin and
5-HIAA.
Watson, 1998) illustrate the thirteen microdissected brain regions analyzed for
rally and when sampled from multiple levels, as indicated in Table 1, are only
r left of the diagrams indicate the distance from Bregma (mm). Scale bar, 1 mm.
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2.4. Selection of forebrain regions for analysis

In order to investigate the effects of FG-7142 on serotonin
metabolism in forebrain regions involved in physiological or
behavioral responses to anxiogenic drugs, thirteen forebrain
regions were selected based on a previous study showing
increased c-Fos expression in these forebrain regions following
anxiogenic drug treatment (Singewald et al., 2003; also see Fig.
1, Table 1). Regions were selected for analysis if they showed
increased numbers of c-Fos-immunoreactive cells following
treatment with each of a range of pharmacologically diverse
anxiogenic drugs (FG-7142, yohimbine, mCPP, and caffeine;
excluding mCPP in some cases). In the case of the bed nucleus
of the stria terminalis (BST) we specifically microdissected the
laterodorsal part of the bed nucleus of the stria terminalis
(BSTLD); this was based on the striking pattern of c-Fos
immunoreactivity within this subdivision of the BST following
anxiogenic drug treatment (see Fig. 1 from Singewald et al.,
2003). Anterior–posterior levels of sections selected for specific
microdissections were identified by comparison with a standard
rat brain stereotaxic atlas (Paxinos and Watson, 1998). The
number and diameter of punches for each region are included in
Fig. 2. FG-7142 dose-dependently increased tryptophan concentrations in specific mic
protein) 1 h following FG-7142 treatment (0, 1.9, 3.8, and 7.5 mg/kg; n=5 for each gr
above each bar. Tryptophan concentrations represent means±SEM. ⁎p<0.05; Dunn
Table 1. All regions were dissected bilaterally, with 1 punch per
side per rostrocaudal level with multiple rostrocaudal levels
sampled for some regions as detailed in Table 1.

2.5. HPLC analysis

Samples in acetate buffer were thawed at 4 °C and
centrifuged at 13,000 RPM for 3 min at room temperature
using a Sanyo MSE MicroCentaur centrifuge (Sanyo, Bensen-
ville, IL, USA). The supernatant was drawn off and the pellet
was reconstituted with 200 μL of 0.2 M NaOH for later assay of
protein content (Pierce Protein Microassay Protocol, Pierce,
Rockford, IL, USA). A 50 μL volume of the supernatant from
each sample was then placed in an ESA 542 autosampler (ESA
Analytical, Ltd., Huntington, UK) maintained at 4 °C. A 15 μL
volume of supernatant from each sample was then injected onto
the chromatographic system. Chromatographic separation was
accomplished using an integrated precolumn/column system
consisting of a guard cartridge (4.6×5 mm) attached to an
Ultrasphere XL-ODS cartridge (4.6×70 mm; Beckman Coulter,
Fullerton, CA, USA). The mobile phase consisted of 9.53 g/L
KH2PO4, 200 mg/L 1-octane sulfonic acid, and 35 mg/L
rodissected brain regions. Graphs illustrate the tryptophan concentrations (pg/μg
oup). The percent change relative to the vehicle-treated control group is indicated
ett's test. For abbreviations see Table 1.
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ethylenediaminetetraacetic acid in 13% methanol; pH was
adjusted to 3.4–3.5 using orthophosphoric acid. Electrochem-
ical detection was accomplished using an ESA Coulochem II
cell with electrodes set at −0.10 and +0.55 V. The mean peak
heights (pg/cm) of known concentrations of tryptophan,
serotonin and 5-HIAA standards were determined from the
peak heights of two chromatographs run before and after each
set of samples. Concentrations of tryptophan, serotonin and 5-
HIAA in the microdissected samples were determined based on
peak heights measured using a computerized analysis system
(EZChrom Elite for Windows, version 2.8; Scientific Software,
Inc., Pleasanton, CA, USA) while the analyst was blind to the
nature of the treatment groups. Indole concentrations were
expressed as pg/μg protein.

2.6. Statistics

All statistical analyses used Statistical Package for the Social
Sciences (SPSS) version 11.5.0 (SPSS, Woking, UK), and all
reported values are mean values and standard errors of the
means (SEM). Effects of FG-7142 and REGION on indole
concentrations were analyzed using a single multifactor analysis
Fig. 3. FG-7142 dose-dependently increased 5-hydroxytryptamine (serotonin) conce
concentrations (pg/μg protein) 1 h following FG-7142 treatment (0, 1.9, 3.8, and 7.5
control group is indicated above each bar. Serotonin concentrations represent means
of variance (ANOVA) with repeated measures using FG-7142
as the between-subjects factor and REGION as the within-
subjects factor for repeated measures analysis. The Greenhouse-
Geisser correction was used for multifactor ANOVA in order to
correct for differences in variance across repeated measures
(Vasey and Thayer, 1987). A Grubb's test was used to eliminate
outliers from the data set. Outliers (2.4%) and missing values
(0.9%) were replaced by the method of Petersen (1985) prior to
the multifactor ANOVA with repeated measures analysis, but
the original data were used for post-hoc analysis and for
graphical representation of the data. Main effects of FG-7142
and REGION or interactions between FG-7142 and REGION
were further analyzed with post-hoc pair-wise comparisons
using Dunnett's test for multiple comparisons with a single
control (vehicle treatment). In all cases, significance was
accepted at p<0.05.

3. Results

Compared to vehicle-treated control rats, rats treated with a
systemic injection of 3.8 or 7.5 mg/kg FG-7142 had increased
tissue concentrations of tryptophan, serotonin and 5-HIAA in
ntrations in specific microdissected brain regions. Graphs illustrate the serotonin
mg/kg; n=5 for each group). The percent change relative to the vehicle-treated
±SEM. ⁎p<0.05; Dunnett's test. For abbreviations see Table 1.



Fig. 4. FG-7142 dose-dependently increased 5-hydroxyindoleacetic acid (5-HIAA) concentrations in the prelimbic cortex. Graphs illustrate the 5-HIAA concentrations
(pg/μg protein) 1 h following FG-7142 treatment (0, 1.9, 3.8, and 7.5 mg/kg; n=5 for each group). The percent change relative to the vehicle-treated control group is
indicated above each bar. 5-HIAA concentrations represent means±SEM. ⁎p<0.05; Dunnett's test. For abbreviations see Table 1.
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specific microdissected forebrain structures, measured 1 h
following treatment. Multifactor repeated measures ANOVA
revealed main effects of FG-7142 on tryptophan (F(3,16)

= 5.390; p= 0.009; Fig. 2), serotonin (F(3,16) = 3.282;
p=0.048; Fig. 3) and 5-HIAA (F(3,16)=3.365; p=0.045;
Fig. 4) concentrations. Multifactor repeated measures
ANOVA (with Greenhouse-Geisser correction) revealed
highly significant main effects of REGION on tryptophan
(F(15,240) = 75.87; epsilon = 0.241; p< 0.001), serotonin
(F(15,240)=91.58; epsilon=0.271; p<0.001), and 5-HIAA
(F(15,240)=113.86; epsilon=0.249; p<0.001) concentrations.
Post-hoc pair-wise comparison of means revealed that rats
treated with FG-7142 (7.5 mg/kg), compared to rats treated
with vehicle, had increased tryptophan, serotonin and 5-
HIAA concentrations in the prelimbic cortex. In addition,
rats treated with FG-7142 (7.5 mg/kg) had increased
tryptophan concentrations in the primary motor cortex,
medial amygdala and the dorsomedial hypothalamic nucleus.
Rats treated with an intermediate dose of FG-7142 (3.8 mg/
kg), relative to vehicle-injected control rats, had increased
serotonin concentrations in the infralimbic cortex and
dorsomedial hypothalamus. No changes in tryptophan,
serotonin, or 5-HIAA concentrations were detected in other
brain regions studied.

4. Discussion

Although FG-7142 increases c-Fos expression in a subset
of serotonergic neurons in the dorsal raphe nucleus (Abrams et
al., 2005) and microinjections of FG-7142 into the dorsal
raphe nucleus are known to increase anxiety-related behavior
(Graeff et al., 1996b; Sena et al., 2003), microdialysis studies
have not detected FG-7142-induced changes in extracellular
serotonin concentrations in specific anxiety-related forebrain
structures analyzed, i.e., the amygdala and hippocampus (Pei
et al., 1989; Viana et al., 1997). In the present study analysis
of 13 different components of an anxiety-related forebrain
circuit revealed that systemic injection of FG-7142 increased
tryptophan, serotonin, and 5-HIAA concentrations within the
prelimbic region of the prefrontal cortex measured 1 h
following treatment. FG-7142 also increased tryptophan
concentrations in the primary motor cortex, medial amygda-
loid nucleus and dorsomedial hypothalamus, but these effects
were not associated with changes in either serotonin or 5-
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HIAA concentrations. FG-7142 increased serotonin concen-
trations in the infralimbic cortex and the dorsomedial
hypothalamus, but these effects were only observed at an
intermediate dose. We did not detect any effects of FG-7142
treatment on tryptophan, serotonin, or 5-HIAA concentrations
in some anxiety-related brain regions, including the basolateral
and central amygdaloid nuclei, and the bed nucleus of the stria
terminalis. It remains possible that more sensitive techniques
that are able to detect temporally dynamic changes in
serotonergic neurotransmission, for example in vivo micro-
dialysis or in vivo voltammetry, would reveal more wide-
spread effects of FG-7142 on indices of serotonergic
neurotransmission. Nevertheless, these findings support the
hypothesis that anxiogenic drugs alter serotonin metabolism
within components of a forebrain neural circuit associated
with modulation of anxiety states.

4.1. FG-7142 and serotonin metabolism in the medial
prefrontal cortex

FG-7142 (7.5 mg/kg) increased tryptophan, serotonin, and 5-
HIAA concentrations in the prelimbic region of the prefrontal
cortex, a component of the ventral portion of the medial
prefrontal cortex. This pattern of results is consistent with a
previous study in rats in which systemic treatment with the same
dose of FG-7142 increased the number of c-Fos-immunoreac-
tive serotonergic neurons within regions of the raphe complex
(median raphe nucleus and mid-rostrocaudal and caudal dorsal
raphe nucleus; Abrams et al., 2005) which innervate the medial
prefrontal cortex (Van Bockstaele et al., 1993; Vertes et al.,
1999). The mechanisms underlying the effects of FG-7142 on
tryptophan, serotonin, and 5-HIAA concentrations within the
medial prefrontal cortex are not clear. While it is possible that
the effects of FG-7142 on tissue concentrations of serotonin and
5-HIAA in the prelimbic cortex were associated with increased
serotonergic neuronal firing rates (Hajos et al., 2003; Puig et al.,
2005), it is also possible that these effects were due to local
regulation of serotonin metabolism and release at terminal sites
in the prefrontal cortex (Sari, 2004).

Increases in serotonin metabolism in the rat medial prefrontal
cortex have been observed following exposure of rats to a
variety of fear- and anxiety-related stimuli. For example,
conditioned fear leads to increased freezing behavior with
associated increases in serotonin release in the medial prefrontal
cortex, responses that can be prevented by pretreatment with the
anxiolytic drug diazepam (Yoshioka et al., 1995). Similarly,
uncontrollable stress has been demonstrated to increase
serotonin efflux in the medial prefrontal cortex (Bland et al.,
2003), and pharmacological inhibition of neuronal activity in
the medial prefrontal cortex can mimic the behavioral and
neurochemical consequences of uncontrollable stress including
induction of c-Fos expression in the caudal dorsal raphe nucleus
and facilitation of learned helplessness behavior (Amat et al.,
2005).

Numerous studies have demonstrated that serotonin mod-
ulates neuronal activity within the medial prefrontal cortex and
this in turn may modulate the excitability of an anatomically
distributed neural system regulating anxiety states. There is
strong evidence for both excitatory (Marek and Aghajanian,
1998; Zhang and Arsenault, 2005) and inhibitory (Hajos et al.,
2003; Amargos-Bosch et al., 2004; Puig et al., 2005) effects of
serotonin on neuronal firing rates in the prefrontal cortex,
including evidence for serotonin-receptor dependent inhibition
of neuronal firing rates of prefrontal pyramidal neurons
following electrical stimulation of the dorsal and median
raphe nuclei (Hajos et al., 2003; Amargos-Bosch et al., 2004;
Puig et al., 2005). The medial prefrontal cortex, in turn, has
widespread influences on multiple components of forebrain
circuits regulating anxiety states and anxiety-related behavior.
For example, the ventral medial prefrontal cortex projects to the
lateral septum, the bed nucleus of the stria terminalis, the
medial, central, and basolateral amygdaloid nuclei, the
dorsomedial hypothalamus, the nucleus accumbens, and the
dorsal and median raphe nuclei of the brainstem (Vertes, 2004).
These neuroanatomical connections are supported by electro-
physiological studies showing that the medial prefrontal cortex
modulates the excitability of neurons in the dorsal raphe nucleus
(Hajos et al., 1998; Celada et al., 2001) as well as the central and
basolateral amygdaloid nuclei (Rosenkranz and Grace, 2002;
Quirk et al., 2003). Particularly relevant is evidence that
inhibitory connections from the medial prefrontal cortex to
interneurons driving the central nucleus of the amygdala play a
role in the inhibition of conditioned fear (Berretta et al., 2005).
These studies suggest that the medial prefrontal cortex exerts
control over individual components of a distributed neural
system modulating anxiety-related physiological and behavioral
responses, including serotonergic neurons in the dorsal raphe
nucleus (Amat et al., 2005; Robbins, 2005). Consequently,
serotonin actions within the medial prefrontal cortex may
modulate the excitability of anxiety-related neural systems
including anxiety-related serotonergic neurons in the dorsal
raphe nucleus.

4.2. Regional specificity of FG-7142-induced effects

The most consistent effects of FG-7142 on measures of
tryptophan concentrations and serotonin metabolism were
observed at the highest dose (7.5 mg/kg), a dose previously
associated with FG-7142-induced increases in behavioral
arousal and vigilance behaviors, increases in c-Fos immunore-
active neurons in an anxiety-related forebrain circuit, as well as
increases in c-Fos expression in subpopulations of serotonergic
neurons within the dorsal and median raphe nuclei (Singewald
and Sharp, 2000; Abrams et al., 2005). The time point for these
changes in serotonin metabolism, measured 1 h following FG-
7142 injection, is consistent with the time course of the peak
FG-7142-induced increases in behavioral arousal and vigilance
behaviors in a home cage environment (Abrams et al., 2005). To
our knowledge, the pharmacokinetics of FG-7142 in rats have
not been well characterized; therefore it is not possible to
determine if the changes in measures of serotonin metabolism
that were observed 1 h following FG-7142 treatment were
related to the anxiogenic effects of FG-7142, or to the recovery
from these effects.
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Treatment with FG-7142 increased indices of serotonin
metabolism in some forebrain structures studied, but not others.
We did not detect changes in measures of serotonin metabolism
in the basolateral amygdaloid nucleus, the central amygdaloid
nucleus or the bed nucleus of the stria terminalis, conspicuous
targets of projections from serotonergic neurons within the mid-
rostrocaudal and caudal dorsal raphe nucleus, a region
implicated in the regulation of anxiety states and anxiety-
related physiological and behavioral responses (Commons et
al., 2003; Abrams et al., 2005). However, a lack of changes in
serotonin metabolism in specific brain regions at the time
corresponding to the peak of behavioral changes following FG-
7142 treatment does not mean that serotonin metabolism might
not change at a different time point. This is particularly the case
if changes that we observed in the medial prefrontal cortex are
either a prerequisite to or secondary to changes in other brain
regions. It is also possible that alternative techniques that are
able to detect temporally dynamic changes in measures of
serotonergic neurotransmission, such as in vivo microdialysis or
voltammetry, would reveal more widespread effects of FG-
7142. On the other hand, the possibility that FG-7142 may
affect serotonergic neurotransmission in some anxiety-related
forebrain structures, but not others, is consistent with the finding
that systemic injection of FG-7142 has no effect on extracellular
concentrations of serotonin in the ventral hippocampus of rats,
as measured using in vivo microdialysis (Pei et al., 1989).
Likewise, this possibility is consistent with the findings that
intra-dorsal raphe nucleus injections of FG-7142, although they
alter anxiety-related behavior (Graeff et al., 1996b; Sena et al.,
2003), have no effects on extracellular serotonin concentrations
in the amygdala or the midbrain dorsal periaqueductal gray at
any time point between 20 and 120 min following injection
(Viana et al., 1997). It remains a possibility that local regulation
of serotonin metabolism and release at presynaptic terminal
sites in regions such as the basolateral amygdaloid nucleus, the
central amygdaloid nucleus and the bed nucleus of the stria
terminalis, could potentially explain a lack of effect of FG-7142
on measures of serotonin metabolism despite FG-7142 actions
at serotonergic cell bodies projecting to those regions, described
previously (Abrams et al., 2005). These are issues that need to
be resolved in future studies.

5. Conclusions

These findings support the hypothesis that anxiogenic drugs
alter serotonin metabolism within specific components of a
neural network associated with modulation of anxiety states,
including the prelimbic region of the medial prefrontal cortex.
Together with previous studies these data are consistent with the
hypothesis that FG-7142 alters anxiety states and anxiety-
related physiological and behavioral responses in part by
increasing serotonergic neurotransmission within the medial
prefrontal cortex. This study provides a hypothetical framework
for future studies of the effects of FG-7142 on temporally
dynamic changes in serotonergic neurotransmission within the
medial prefrontal cortex, part of an anxiety-related neural
network regulating executive function and emotional behavior.
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